本题共有2个小题,第1小题满分4分,第2个小题满分8分。已知复数(是虚数单位)在复平面上对应的点依次为,点是坐标原点.(1)若,求的值; (2)若点的横坐标为,求.
.(本小题12分) 设关于x的函数y=2cos2x-2acosx-(2a+1)的最小值为f(a),试确定满足f(a)=的a值,并对此时的a值求y的最大值.
(本小题12分) 甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达码头的时刻是等可能的,如果甲船停泊时间为1h,乙船停泊时间为2h,求它们中的任意一艘都不需要等待码头空出的概率. (精确到0.001)
.(本小题12分)
(本小题12分) 射手张强在一次射击中射中10环、9环、8环、7环、7环以下的概率分别是0.24,0.28,0.19,0.16,0.13.计算这个射手在一次射击中: (1)射中10环或9环的概率; (2)至少射中7环的概率; (3)射中环数不足8环的概率.
(本小题12分) 给出以下一个算法的程序(如图所示), (1)该程序的功能是; (2)请用直到型循环结构画出相应算法的程序框图.