给定抛物线C:y2=4x,F是C的焦点,过点F的直线与C相交于A、B两点。(1)设的斜率为1,求与夹角的余弦值;(2)设,若∈[4,9],求在y轴上截距的变化范围。
设不等式ax2+bx+c>0的解集是{x|a<x<β}(0<a<β),求不等式cx2+bx+a<0的解集.
若不等式 对一切x恒成立,求实数m的范围.
已知关于的方程两根为,试求的极值。
证明关于的不等式与,当为任意实数时,至少有一个桓成立。
为何值时,关于的方程的两根: (1)为正数根;(2)为异号根且负根绝对值大于正根;(3)都大于1;(4)一根大于2,一根小于2;(5)两根在0,2之间。