给定抛物线C:y2=4x,F是C的焦点,过点F的直线与C相交于A、B两点。(1)设的斜率为1,求与夹角的余弦值;(2)设,若∈[4,9],求在y轴上截距的变化范围。
甲﹑乙两人玩一种游戏,每次有甲﹑乙两人各出1到5根手指,若和为偶数则甲赢,否则乙赢. (1)若以A表示和为6的事件,求P(A) (2)这种游戏公平吗?试说明理由.
已知p:|x-3|≤2,q:(x-m+1)(x-m-1)≤0,若﹁p是﹁q的充分而不必要条件,求实数m的取值范围.
用秦九韶算法求多项式,当x=2时的值.
过曲线上的一点作曲线的切线,交x轴于点P1,过P1作垂直于x轴的直线交曲线于Q1,过Q1作曲线的切线,交x轴于点P2;过P2作垂直于x轴的直线交曲线于Q2,过Q2作曲线的切线,交x轴于点P3;……如此继续下去得到点列:设的横坐标为 (I)试用n表示; (II)证明: (III)证明:
已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线是抛物线的一条切线. (Ⅰ)求椭圆的方程; (Ⅱ)过点的动直线L交椭圆C于 A.B两点.问:是否存在一个定点T,使得以AB为直径的圆恒过点T ? 若存在,求点T坐标;若不存在,说明理由.