形状如图所示的三个游戏盘中(图(1)是正方形,M、N分别是所在边中点,图(2)是半径分别为2和4的两个同心圆,O为圆心,图(3)是正六边形,点P为其中心)各有一个玻璃小球,依次摇动三个游戏盘后,将它们水平放置,就完成了一局游戏. (I)一局游戏后,这三个盘中的小球都停在阴影部分的概率是多少? (II)用随机变量表示一局游戏后,小球停在阴影部分的事件数与小球没有停在阴影部分的事件数之差的绝对值,求随机变量的分布列及数学期望.
(本题满分14分) 设函数f (x)=ln x+在(0,) 内有极值. (Ⅰ) 求实数a的取值范围; (Ⅱ) 若x1∈(0,1),x2∈(1,+).求证:f (x2)-f (x1)>e+2-. 注:e是自然对数的底数.
(本题满分15分) 如图,椭圆C: x2+3y2=3b2(b>0). (Ⅰ) 求椭圆C的离心率; (Ⅱ) 若b=1,A,B是椭圆C上两点,且| AB | =,求△AOB面积的最大值.
(本题满分15分)四棱锥P-ABCD中,PA⊥平面ABCD,E为AD的中点,ABCE为菱形,∠BAD=120°,PA=AB,G,F分别是线段CE,PB上的动点,且满足==λ∈(0,1). (Ⅰ) 求证:FG∥平面PDC; (Ⅱ) 求λ的值,使得二面角F-CD-G的平面角的正切值为.
(本题满分14分) 设等差数列{an}的首项a1为a,前n项和为Sn. (Ⅰ) 若S1,S2,S4成等比数列,求数列{an}的通项公式; (Ⅱ) 证明:n∈N*, Sn,Sn+1,Sn+2不构成等比数列.
(本题满分14分) 在△ABC中,角A,B,C所对的边分别为a,b,c,已知 tan (A+B)=2. (Ⅰ) 求sin C的值; (Ⅱ) 当a=1,c=时,求b的值.