形状如图所示的三个游戏盘中(图(1)是正方形,M、N分别是所在边中点,图(2)是半径分别为2和4的两个同心圆,O为圆心,图(3)是正六边形,点P为其中心)各有一个玻璃小球,依次摇动三个游戏盘后,将它们水平放置,就完成了一局游戏. (I)一局游戏后,这三个盘中的小球都停在阴影部分的概率是多少? (II)用随机变量表示一局游戏后,小球停在阴影部分的事件数与小球没有停在阴影部分的事件数之差的绝对值,求随机变量的分布列及数学期望.
《选修4-4:坐标系与参数方程》已知直线L的参数方程:(t为参数)和圆C的极坐标方程: (θ为参数). (1)求圆C的直角坐标方程. (2)判断直线L和圆C的位置关系.
已知. (1)若,求曲线在点处的切线方程; (2)若求函数的单调区间.
已知椭圆C的中心在原点,焦点在轴上,左右焦点分别为,且,点(1,)在椭圆C上. (1)求椭圆C的方程; (2)过的直线与椭圆相交于两点,且的面积为,求直线的方程.
近几年出现各种食品问题,食品添加剂会引起血脂增高、血压增高、血糖增高等疾病.为了解三高疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:
(1)请将如图的列联表补充完整;若用分层抽样的方法在患三高疾病的人群中抽人,其中女性抽多少人? (2)为了研究三高疾病是否与性别有关,请计算出统计量,并说明你有多大的把握认为三高疾病与性别有关? 下面的临界值表供参考:
(参考公式,其中)
如图五面体中,四边形为矩形,,四边形为梯形, 且,. (1)求证:; (2)求此五面体的体积.