已知函数(其中)的最大值为2,直线是的图象的任意两条对称轴,且的最小值为(1)求的值;(2)若的值。
(本小题满分12分)已知,.(1) 若,求;(2) 若R,求实数的取值范围.
(本小题满分13分)设函数,其中为正整数.(Ⅰ)判断函数的单调性,并就的情形证明你的结论;(Ⅱ)证明:;(Ⅲ)对于任意给定的正整数,求函数的最大值和最小值.
(本小题满分13分)椭圆的左、右焦点分别为F1、F2,过F1的直线l与椭圆交于A、B两点.(Ⅰ)如果点A在圆(c为椭圆的半焦距)上,且|F1A|=c,求椭圆的离心率;(Ⅱ)若函数的图象,无论m为何值时恒过定点(b,a),求的取值范围.
(本小题满分13分)已知数列满足(Ⅰ)求;(Ⅱ)已知存在实数,使为公差为的等差数列,求的值;(Ⅲ)记,数列的前项和为,求证:.
(本小题满分12分)如图,斜三棱柱,已知侧面与底面ABC垂直且∠BCA =90°,∠,=2,若二面角为30°. (Ⅰ)证明; (Ⅱ)求与平面所成角的正切值;(Ⅲ)在平面内找一点P,使三棱锥为正三棱锥,并求P到平面距离.