已知函数.(Ⅰ)求的最小正周期;(Ⅱ)求在区间上的最大值和最小值.
如图,AB是⊙O的直径,C、F是⊙O上的点,AC是∠BAF的平分线,过点C作CD⊥AF,交AF的延长线于点D. (1)求证:CD是⊙O的切线. (2)过C点作CM⊥AB,垂足为M,求证:AM•MB=DF•DA.
已知函数在点(﹣1,f(﹣1))的切线方程为x+y+3=0. (Ⅰ)求函数f(x)的解析式; (Ⅱ)设g(x)=lnx,求证:g(x)≥f(x)在x∈[1,+∞)上恒成立.
如图,已知菱形ACSB中,∠ABS=60°.沿着对角线SA将菱形ACSB折成三棱锥S﹣ABC,且在三棱锥S﹣ABC中,∠BAC=90°,O为BC中点. (Ⅰ)证明:SO⊥平面ABC; (Ⅱ)求平面ASC与平面SCB夹角的余弦值.
在梯形ABCD中,AD∥BC,BC=2AD,AD=AB=,AB⊥BC,如图把△ABD沿BD翻折,使得平面ABD⊥平面BCD. (Ⅰ)求证:CD⊥平面ABD; (Ⅱ)若点M为线段BC中点,求点M到平面ACD的距离.
已知{an}是正项数列,a1=1,且点(,an+1)(n∈N*)在函数y=x2+1的图象上. (1)求数列{an}的通项公式; (2)若列数{bn}满足b1=1,bn+1=bn+2,求证:bnbn+2<b.