如图,已知E,F分别是正方形ABCD边BC、CD的中点,EF与AC交于点O,PA,NC都垂直于平面ABCD,且PA=AB=4,NC=2,M是线段PA上的一动点.(1)求证:平面PAC⊥平面NEF;(2)若PC∥平面MEF,试求PM∶MA的值;(3)当M的是PA中点时,求二面角M-EF-N的余弦值.
如图组合体中,三棱柱的侧面是圆柱的轴截面,是圆柱底面圆周上不与重合一个点。 (Ⅰ)求证:无论点如何运动,平面平面; (Ⅱ)当点是弧的中点时,求四棱锥与圆柱的体积比。
如图,在正四棱锥中,,点在棱上。 (Ⅰ)问点在何处时,,并加以证明; (Ⅱ)求二面角的余弦值。
设函数=是奇函数,其中,,。 (Ⅰ)求的值; (Ⅱ)判断并证明在上的单调性。
已知圆和直线,直线,都经过圆C外 定点A(1,0). (Ⅰ)若直线与圆C相切,求直线的方程; (Ⅱ)若直线与圆C相交于P,Q两点,与交于N点,且线段PQ的中点为M, 求证:为定值.
在正方体中,分别是中点. (Ⅰ)求证:平面⊥平面; (Ⅱ)若在棱上有一点,使平面,求与的比.