两个重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车. 已知该车每次拖4节车厢,一日能来回16次, 如果每次拖7节车厢,则每日能来回10次.(1)若每日来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数解析式;(2)在(1)的条件下,每节车厢能载乘客110人.问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数
给定两个命题,:对任意实数都有恒成立;:.如果∨为真命题,∧为假命题,求实数的取值范围.
在中,角所对边分别为,已知,且最长边的边长为.求: (1)角的正切值及其大小; (2)最短边的长.
数列的前项和为,. (1)求数列的通项公式; (2)设求数列的前项和.
已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录如下:、、、. (1)经判断点,在抛物线上,试求出的标准方程; (2)求抛物线的焦点的坐标并求出椭圆的离心率; (3)过的焦点直线与椭圆交不同两点且满足,试求出直线的方程.
如图,在四棱锥中,底面是边长为1的菱形,,底面,,为的中点,为的中点,于,如图建立空间直角坐标系. (1)求出平面的一个法向量并证明平面; (2)求二面角的余弦值.