已知椭圆的右焦点为且,设短轴的一个端点为,原点到直线的距离为,过原点和轴不重合的直线与椭圆相交于两点,且.(1) 求椭圆的方程;(2) 是否存在过点的直线与椭圆相交于不同的两点且使得成立?若存在,试求出直线的方程;若不存在,请说明理由.
设函数. (1)解不等式 (2)若关于的不等式的解集不是空集,试求实数的取值范围.
已知曲线为参数),为参数). (1)化的方程为普通方程 (2)若上的点对应的参数为,为上的动点,求中点到直线为参数)距离的最小值.
如图,在△中,是的中点,是的中点,的延长线交于. (Ⅰ)求的值; (Ⅱ)若△的面积为, 四边形的面积为,求的值.
已知函数(常数). (Ⅰ)求的单调区间; (Ⅱ)设如果对于的图象上两点,存在,使得的图象在处的切线∥,求证:.
已知分别为椭圆的上下焦点,其中也是抛物线的焦点,点是与在第二象限的交点,且. (1)求椭圆的方程; (2)已知点和圆,过点的动直线与圆相交于不同的两 点,在线段上取一点,满足且. 求证:点总在某定直线上.