(本小题满分16分) 如图,在平面直角坐标系中,已知点为椭圆的右顶点, 点,点在椭圆上, .(1)求直线的方程; (2)求直线被过三点的圆截得的弦长;(3)是否存在分别以为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不存在,请说明理由
已知命题p:x∈A={x|a-1<x<a+1,x∈R},命题q:x∈B={x|x2-4x+3≥0}.(1)或A∩B=∅,A∪B=R,求实数a,(2)若綈q是p的必要条件,求实数a.
设p:实数x满足x2-4ax+3a2<0,其中a<0,q:实数x满足x2-x-6≤0,或x2+2x-8>0,且綈p是綈q的必要不充分条件,求a的取值范围.
设函数f(x)=ax+2,不等式|f(x)|<6的解集为(-1,2),试求不等式≤1的解集.
已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分别求适合下列条件的a的值.(1)9∈A∩B;(2){9}=A∩B.
已知集合A={x|x2-4x-5≤0},B={x|x2-2x-m<0}.(1)当m=3时,求A∩∁RB;(2)若A∩B={x|-1≤x<4},求实数m的值