12分)已知是数列的前项和,且对任意,有.记.其中为实数,且. (1)当时,求数列的通项; (2)当时,若对任意恒成立,求的取值范围.
已知函数. (I)当时,求函数的定义域; (II)若关于的不等式的解集是,求的取值范围
(本小题满分14分) 设 (1)若在其定义域内为单调递增函数,求实数的取值范围; (2)设,且,若在上至少存在一点,使得成立,求实数的取值范围.
(本小题满分13分)已知某几何体的直观图和三视图如下图所示, 其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形. (Ⅰ)证明:⊥平面; (Ⅱ)求平面与平面所成角的余弦值;
(本小题12分)为了丰富学生的课余生活,促进校园文化建设,我校高二年级通过预赛选出了6个班(含甲、乙)进行经典美文颂读比赛决赛.决赛通过随机抽签方式决定出场顺序. 求:(1)甲、乙两班恰好在前两位出场的概率; (2)决赛中甲、乙两班之间的班级数记为,求的分布列和数学期望.
(本小题满分12分) 在极坐标系中,已知圆C的圆心,半径r=2,Q点在圆C上运动。 (I)求圆C的极坐标方程; (II)若P在直线OQ上运动,且OQ∶OP=3∶2,求动点P的轨迹方程。