(本小题满分12分)已知函数的导函数为偶函数,直线是的一条切线.(1).求的值 (2).若,求的极值.
(本小题14分)在数列中,=0,且对任意k,成等差数列,其公差为2k. (Ⅰ)证明成等比数列;(Ⅱ)求数列的通项公式; (Ⅲ)记. 证明: 当为偶数时, 有.
(本小题14分)已知点,直线,为平面上的动点,过点作直线的垂线,垂足为点,且.(1)求动点的轨迹的方程; (2)轨迹上是否存在一点使得过的切线与直线平行?若存在,求出的方程,并求出它与的距离;若不存在,请说明理由.
(14分) 点,圆与椭圆有一个公共点,分别是椭圆的左右焦点,直线与圆相切.(1)求的值;(2)求椭圆的方程。
(本小题14分)在等比数列中,,公比,且,又与的等比中项是2,(1)求数列的通项公式;(2)设,数列的前项和为,求.
(本小题12分)已知且,命题P:函数在区间上为减函数;命题Q:曲线与轴相交于不同的两点.若为真,为假,求实数的取值范围.