三人独立破译同一份密码.已知三人各自破译出密码的概率分别为且他们是否破译出密码互不影响.(1)求恰有二人破译出密码的概率;(2)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.
(本小题满分14分)已知函数图象上一点处的切线方程为.(1)求的值;(2)若方程在内有两个不等实根,求的取值范围(其中为自然对数的底数);
(本小题满分14分)等差数列中,,前项和为,等比数列各项均为正数,,且,的公比(1)求与; (2)求数列的前项和
(本小题满分12分) 如图,在正方体中,分别为棱的中点. (1)试判截面的形状,并说明理由; (2)证明:平面平面.
某项竞赛分别为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别是,且各阶段通过与否相互独立. (1)求该选手在复赛阶段被淘汰的概率; (2)设该选手在竞赛中回答问题的个数为,求的分布列、数学期望和方差.
已知,且. (1)求实数的值;(2)求函数的最大值和最小值.