已知点,及⊙:。(Ⅰ)当直线过点且与圆心的距离为1时,求直线的方程;(Ⅱ)设过点的直线与⊙交于、两点,当,求以线段为直径的圆的方程。
(本小题满分12分)如图所示,在四棱锥中,底面为正方形,侧棱⊥底面,,分别为上的动点,且.(1)若,求证:∥;(2)求三棱锥体积最大值.
(本小题满分10分)设函数在处取最大值.(1)求的值;(2)在中,分别是角A,B,C的对边,已知,求角C.
(本小题满分10分) 已知曲线的极坐标方程是,直线的直角坐标方程为.(1)将曲线的极坐标方程化为直角坐标方程;(2)设直线与轴的交点是,是曲线上一动点,求的最大值.
(本小题满分13分)已知函数(1)当时,求函数的单调区间;(2)若,且曲线在点(不重合)处切线的交点位于直线上,求证:两点的横坐标之和小于4;(3)当时,如果对于任意、、,,总存在以、、为三边长的三角形,试求实数的取值范围.
(本小题满分13分)如图,直角坐标系中,一直角三角形,,在轴上且关于原点对称,在边上,,的周长为12.若一双曲线以为焦点,且经过两点.(1)求双曲线的方程;(2)若一过点(为非零常数)的直线与双曲线相交于不同于双曲线顶点的两点、,且,问在轴上是否存在定点,使?若存在,求出所有这样定点的坐标;若不存在,请说明理由.