(本题满分6分) 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,Rt△ABC的顶点均在格点上,在建立平面直角坐标系以后,点A的坐标为(-6,1),点B的坐标为(-3,1),点C的坐标为(-3,3).(1)将Rt△ABC沿X轴正方向平移5个单位得到Rt△A1B1C1,试在图上画出Rt△A1B1C1的图形,并写出点A1的坐标。(2)将原来的Rt△ABC绕着点B顺时针旋转90°得到Rt△A2B2C2,试在图画出Rt△A2B2C2的图形。
(本题满分10分) 在一个口袋中有n个小球,其中2个是白球,其余为红球,这些球除颜色外,其余都相同,在看不到球的条件下,从袋中随机地取出一个球,它是红球的概率是. (1)求n的值; (2)甲、乙、丙三人玩一个游戏:把这n个球分别标号为1,2,3,…n,三人按先后顺序各摸出一个球(不放回),哪个摸出一号球,哪个获胜.(若不分胜负,再重新摸)请你用画树形图的方法分析:他们各自获胜的机会与他们摸球的顺序是否有关?若有关,请指出第几个摸球更有利;若无关,请说明理由
已知:如图8,AD是△ABC外接圆⊙O的直径,AE是△ABC的边BC上的高,DF⊥ BC,F为垂足. (1)求证:BF=EC; (2)若C点是AD的中点,且DF=3AE=3,求BC的长.
(本题满分7分) 在日常生活中,我们经常有目的地收集数据,分析数据,作出预测, (1)图7是小芳家2010年全年月用电量的条形统计图.. 根据图中提供的信息,回答下列问题: ①2010年小芳家月用电量最小的是_____月,四个季度中用电量最大的是第___季度; ②求2010年5月至6月用电量的月增长率; (2)2011年小芳家准备添置新电器.假设2011年5月份的用电量是120千瓦时,根据2010年5月至7月用电量的增长趋势,预计2011年7月份的用电量将达到240千瓦时.假设2011年5月至6月用电量月增长率是6月至7月用电量月增长率的1.5倍,预计小芳家2011年6月份的用电量是多少千瓦时?
(本题满分7分) 如图6,在△ABC中,∠C=90°,AC+BC=8,∠ACB的平分线交AB于点D,以D为圆心的⊙O与AC相切于点D. (1)求证: ⊙0与BC相切; (2)当AC=2时,求⊙O的半径,
在如图5所示的方格纸中,△ABC的顶点都在小正方形的顶点上,以小正方形互相垂直的两边所在直线建立平面直角坐标系 (1)作出△ABC关于y轴对称的△A1B1C1,其中A,B,C分别和A1,B1 ,C1对应; (2)平移△ABC,使得A点在x轴上,B点在y轴上,平移后的三角形 为△A2B2C2,作出平移后的△A2B2C2,其中A,B,C分别和A2,B2,C2对应; (3)填空:在(2)中,设原△ABC的外心为M1,△A2B2C2的外心为M2,M1与M2之间的距离为__