某校从参加高一年级期末考试的学生中抽出60名学生,并统计了他们的物理成绩(成绩均为整数且满分为100分),把其中不低于50分的分成五段[50,60),[60,70)…[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求出物理成绩低于50分的学生人数;(2)估计这次考试物理学科及格率(60分及以上为及格)
为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则如图所示,例如,明文1,2,3,4对应密文5,7,18,16. 当接收方收到密文14,9,23,28时,则解密得到的明文为.
为了保证信息安全传输,设计一种密码系统,其加密、解密原理如下图: 现在加密方式为:把发送的数字信息X,写为“a11a21a12a22”的形式,先左乘矩阵A=,再左乘矩阵B=,得到密文Y,现在已知接收方得到的密文4,12,36,72,试破解该密码.
证明:对任给的奇素数p,总存在无穷多个正整数n使得p|(n2n﹣1).
已知简单多面体的顶点数、面数、棱数分别为V、F、E,多面体的各面为正x边形,过同一顶点的面数为y.求证:+﹣=.
下面(a)(b)(c)(d)为四个平面图: (1)数出每个平面图的顶点数、边数、区域数(不包括图形外面的无限区域),并将相应结果填入表:
(2)观察表,若记一个平面图的顶点数、边数、区域数分别为E、F、G,试推断E、F、G之间的等量关系; (3)现已知某个平面图有2009个顶点,且围成2009个区域,试根据以上关系确定该平面图的边数.