已知向量,,函数,.(Ⅰ)求函数的最小正周期;(Ⅱ)在中,分别是角的对边,R为外接圆的半径,且,,,且,求的值.
(本小题12分)如图,在中,为边上的高,,沿将翻折,使得得几何体(Ⅰ)求证:;(Ⅱ)求点D到面ABC的距离。
(本小题满分12分)已知二项式(N*)展开式中,前三项的二项式系数和是,求:(Ⅰ)的值;(Ⅱ)展开式中的常数项.
已知定义在的函数,对任意的、,都有,且当时,.(1)证明:当时,;(2)判断函数的单调性并加以证明;(3)如果对任意的、,恒成立,求实数的取值范围.
设为两个不共线向量.(1)试确定实数k,使共线;(2),求使三个向量的终点在同一条直线上的的值.
商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少.把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元.现在这种羊毛衫的成本价是100元/ 件,商场以高于成本价的价格(标价)出售. 问:(1)商场要获取最大利润,羊毛衫的标价应定为每件多少元?(2)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?