在极坐标系内,已知曲线的方程为,以极点为原点,极轴方向为正半轴方向,利用相同单位长度建立平面直角坐标系,曲线的参数方程为(为参数).(1) 求曲线的直角坐标方程以及曲线的普通方程;(2) 设点为曲线上的动点,过点作曲线的两条切线,求这两条切线所成角余弦值的取值范围.
如图,点A,B,C是圆O上的点,且AB=4,∠ACB=45°,求圆O的面积.
如图,AC为圆O的直径,弦BD⊥AC于点P,PC=2,PA=8,求tan∠ACD的值.
如图,点P在圆O直径AB的延长线上,且PB=OB=2,PC切圆O于C点,CD⊥AB于D点,求PC和CD的长.
在梯形ABCD中,点E、F分别在腰AB、CD上,EF∥AD,AE∶EB=m∶n.求证:(m+n)EF=mBC+nAD.你能由此推导出梯形的中位线公式吗?
如图,四边形ABCD是正方形,E是AD上一点,且AE=AD,N是AB的中点,NF⊥CE于F,求证:FN2=EF·FC.