(本小题共13分)某学校餐厅新推出A、B、C、D四款套餐,某一天四款套餐销售情况的条形图如下。为了了解同学对新推出的四款套餐的评价,对每位同学都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:(1)若同学甲选择的是A款套餐,求甲的调查问卷被选中的概率;(2)若想从调查问卷被选中且填写不满意的同学中再选出2人进行面谈,求这两人中至少有一人选择是D款套餐的概率。
如图,⊙O内切△ABC的边于D、E、F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G. ⑴证明:圆心O在直线AD上; ⑵证明:点C是线段GD的中点.
已知点,,动点的轨迹曲线满足,,过点的直线交曲线于、两点. (1)求的值,并写出曲线的方程; (2)求△面积的最大值.
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切. (Ⅰ)求椭圆的方程; (Ⅱ)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足(其中为坐标原点),求整数的最大值.
如图:在三棱锥D-ABC中,已知是正三角形,AB平面BCD,,E为BC的中点,F在棱AC上,且 (1)求三棱锥D-ABC的表面积; (2)求证AC⊥平面DEF; (3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.
已知 且;:集合,且.若∨为真命题,∧为假命题,求实数的取值范围.