已知椭圆E:的下焦点为、上焦点为,其离心 率。过焦点F2且与轴不垂直的直线l交椭圆于A、B两点。(1)求实数的值; (2)求DABO(O为原点)面积的最大值.
过双曲线的左焦点且垂直于轴的直线与双曲线相交于两点,以为直径的圆恰好过双曲线的右顶点,求此双曲线的离心率。
已知双曲线的两条渐近线都过坐标原点,且都与以点为圆心,为半径的圆相切,又该双曲线的一个顶点是点关于直线的对称点。(1)求此双曲线的方程;(2)若直线过点,且与直线垂直,在双曲线上求一点,使到此直线的距离为。
过点的直线交双曲线于两个不同的点,是坐标原点,直线与的斜率之和为,求直线的方程。
试证明:椭圆与曲线有相同的焦点。
求经过点且的双曲线的标准方程。