(本小题满分14分)已知数列的前n项和满足:(a为常数,且)。(1)求的通项公式;(2)设,若数列为等比数列,求a的值;(3)在满足条件(2)的情形下,设,数列的前n项和为求证:
在等腰梯形中,,,,是的中点.将梯形绕旋转,得到梯形(如图).(1)求证:平面; (2)求证:平面;(3)求二面角的余弦值.
某单位实行休年假制度三年来,名职工休年假的次数进行的调查统计结果如下表所示:
根据上表信息解答以下问题:⑴从该单位任选两名职工,用表示这两人休年假次数之和,记“函数,在区间,上有且只有一个零点”为事件,求事件发生的概率;⑵从该单位任选两名职工,用表示这两人休年假次数之差的绝对值,求随机变量的分布列及数学期望.
已知函数(Ⅰ)求的最小正周期; (Ⅱ)在中,角所对的边分别是若且,试判断的形状.
已知函数 f x = 1 - x 1 + x 2 e x . (Ⅰ)求 f x 的单调区间; (Ⅱ)证明:当 f x 1 = f x 2 x 1 ≠ x 2 时, x 1 + x 2 < 0 .
已知 F 1 , F 2 分别是椭圆 E : x 2 5 + y 2 = 1 的左、右焦点 F 1 , F 2 关于直线 x + y - 2 = 0 的对称点是圆 C 的一条直径的两个端点. (Ⅰ)求圆 C 的方程; (Ⅱ)设过点 F 2 的直线 l 被椭圆 E 和圆 C 所截得的弦长分别为 a , b .当 a b 最大时,求直线 l 的方程.