如图1,在△ABC中,AB=BC=5,AC="6." △ECD是△ABC沿BC方向平移得到的,连接AE. AC和BE相交于点O.⑴判断四边形ABCE是怎样的四边形,说明理由; ⑵如图2,P是线段BC上一动点,(不与点B、C重合),连接PO并延长交线段AB于点Q,QR⊥BD,垂足为点R.四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积.
计算:(1) 化简:(2)(a2-1)÷(1-) (3) 解关于x的方程:21世纪教育(4)解不等式组:
如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°.将一把直角三角尺的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方,其中∠OMN=30°。 (1)将图1中的三角尺绕点O顺时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数; (2)将图1中的三角尺绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第秒时,边MN恰好与射线OC平行;在第秒时,直线ON恰好平分锐角∠AOC。(直接写出结果); (3)将图1中的三角尺绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.
操作与实践 (1)如图1,已知△ABC,过点A画一条平分三角形面积的直线; (2)如图2,已知l1∥l2,点E,F在l1上,点G,H在l2上,试说明△EGO与△FHO的面积相等; (3)如图3,点M在△ABC的边上, 过点M画一条平分三角形面积的直线.
已知a+b=3,ab=2,求a2b+ab2,a2+b2的值。
将一副标准的直角三角尺如图放置,已知AE∥BC,求∠AFD的度数.