有研究发现,人体在注射一定剂量的某种药物后的数小时内,体内血液中的药物浓度(即血药浓度)y毫克/升是时间t(小时)的二次函数,已知某病人的三次化验结果如下表:(1)求y与t的函数关系式;(2)在注射后的第几小时,该病人体内的血药浓度达到最大?最大浓度是多少?(3)该病人在注射后的几个小时内,体内的血药浓度超过0.3毫克/升?
下图曾被哈佛大学选为入学考试的试题.请在下列一组图形符号中找出它们所蕴含的内在规律,然后在空白处填上恰当的图形.
(本题8分)从2开始,连续的偶数相加,它们的和的情况如下表:
(1)按这个规律,当m=6时,和为_______; (2)从2开始,m个连续偶数相加,它们的和S与m之间的关系,用公式表示出来为: __________________________________________. (3)应用上述公式计算: ①2+4+6+…+200②202+204+206+…+300
(本题10分)已知A、B在数轴上分别表示a,b. (1)对照数轴填写下表:
(2)若A、B两点间的距离记为d,试问:d和a,b有何数量关系? (3)在数轴上标出所有符合条件的整数点P,使它到10和-10的距离之和为20,并求所有这些整数的和; (4)找出(3)中满足到10和-10的距离之差大于1而小于5的整数的点P; (5)若点C表示的数为x,当点C在什么位置时,取得的值最小?
(本题8分)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动。它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负。如果从A到B记为:A→B(+l,+3);从C到D记为:C→D(+1,-2)。其中第一个数表示左右方向,第二个数表示上下方向,那么图中 (1)A→C( , ),C→ (-2, ); (2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程; (3)假如这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,-1),(-2,+3),请在图中标出P的位置。
(本题6分)根据某地实验测得的数据表明,高度每增加1 km,气温大约下降6℃,已知该地地面温度为21℃. (1)高空某处高度是8 km,求此处的温度是多少; (2)高空某处温度为一24 ℃,求此处的高度.