已知双曲线方程为,椭圆C以该双曲线的焦点为顶点,顶点为焦点。(1)当,时,求椭圆C的方程;(2)在(1)的条件下,直线:与轴交于点P,与椭圆交与A,B两点,若O为坐标原点,与面积之比为2:1,求直线的方程;(3)若,椭圆C与直线:有公共点,求该椭圆的长轴长的最小值。
(本小题满分14分)已知点是离心率为的椭圆:上的一点.斜率为的直线交椭圆于、两点,且、、三点不重合. (Ⅰ)求椭圆的方程; (Ⅱ)的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由? (Ⅲ)求证:直线、的斜率之和为定值.
已知函数(,实数,为常数). (Ⅰ)若,求在处的切线方程; (Ⅱ)若,讨论函数的单调性.
(本小题满分13分)为了参加广州亚运会,从四支较强的排球队中选出18人组成女子排球国家队,队员来源人数如下表:
(Ⅰ)从这18名队员中随机选出两名,求两人来自同一支队的概率; (Ⅱ)中国女排奋力拼搏,战胜韩国队获得冠军.若要求选出两位队员代表发言,设其中来自北京队 的人数为,求随机变量的分布列,及数学期望.
(本小题满分14分)如图,四棱锥的底面为正方形,侧棱底面,且,分别是线段的中点. (Ⅰ)求证://平面; (Ⅱ)求证:平面; (Ⅲ)求二面角的大小.
(本小题满分13分)在中,分别为角所对的三边,已知. (Ⅰ)求角的值; (Ⅱ)若,,求的长.