已知双曲线方程为,椭圆C以该双曲线的焦点为顶点,顶点为焦点。(1)当,时,求椭圆C的方程;(2)在(1)的条件下,直线:与轴交于点P,与椭圆交与A,B两点,若O为坐标原点,与面积之比为2:1,求直线的方程;(3)若,椭圆C与直线:有公共点,求该椭圆的长轴长的最小值。
已知数列{an}前n项和为Sn,且a2an=S2+Sn对一切正整数都成立.(1)求a1,a2的值;(2)设a1>0,数列前n项和为Tn,当n为何值时,Tn最大?并求出最大值.
设{an}是公比不为1的等比数列,其前n项和为Sn,且a5,a3,a4成等差数列.(1)求数列{an}的公比;(2)证明:对任意k∈N+,Sk+2,Sk,Sk+1成等差数列.
已知等差数列{an}的公差d=1,前n项和为Sn.(1)若1,a1,a3成等比数列,求a1;(2)若S5>a1a9,求a1的取值范围.
已知数列{an}是首项为1,公差为d的等差数列,数列{bn}是首项为1,公比为q(q>1)的等比数列.(1)若a5=b5,q=3,求数列{an·bn}的前n项和;(2)若存在正整数k(k≥2),使得ak=bk.试比较an与bn的大小,并说明理由..
已知等差数列{an}满足:an+1>an(n∈N*),a1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项.(1)分别求数列{an}、{bn}的通项公式;(2)设Tn=(n∈N*),若Tn+<c(c∈Z)恒成立,求c的最小值.