(本小题满分12分)已知椭圆E的中心在坐标原点,焦点在x轴上,离心率为,且椭圆E上一点到两个焦点距离之和为4;是过点P(0,2)且互相垂直的两条直线,交E于A,B两点,交E交C,D两点,AB,CD的中点分别为M,N。(1)求椭圆E的方程;(2)求k的取值范围;(3)求的取值范围。
已知函数.(1)求函数的单调递增区间;(2)记△的内角、、所对的边长分别为、、,若,△的面积,,求的值.
在极坐标系中,点坐标是,曲线的方程为;以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,斜率是的直线经过点.(1)写出直线的参数方程和曲线的直角坐标方程;(2)求证直线和曲线相交于两点、,并求的值.
如图,椭圆的焦点在x轴上,左右顶点分别为A1,A,上顶点B,抛物线C1,C2分别以A1,B为焦点,其顶点均为坐标原点O,C1与C2相交于直线上一点P.(1)求椭圆C及抛物线C1,C2的方程;(2)若动直线l与直线OP垂直,且与椭圆C交于不同两点M,N,已知点,求的最小值.
已知函数(1)当m=2时,求曲线在点(1,f(1))处的切线方程;(2)若时,不等式恒成立,求实数m的取值范围.
请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.