在如图所示的空间几何体中,平面平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角为60°,且点E在平面ABC上的射影落在的平分线上。(1)求证:DE//平面ABC;(2)求二面角E—BC—A的余弦值;
已知命题:,是方程的两个实根,且不等式对任意恒成立;命题:不等式有解,若命题为真,为假,求实数的取值范围.
已知椭圆上的点到左、右两焦点的距离之和为,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)过右焦点的直线交椭圆于两点.(1)若轴上一点满足,求直线斜率的值;(2)是否存在这样的直线,使的最大值为(其中为坐标原点)?若存在,求直线方程;若不存在,说明理由.
已知数列为等差数列,,数列的前n项和为,且有.(Ⅰ)求、的通项公式;(Ⅱ)若,的前n项和为,求.
设命题实数满足,其中,命题实数满足.(Ⅰ)若,且为真,求实数的取值范围;(Ⅱ)若是的充分不必要条件,求实数的取值范围.
是我军三个炮兵阵地,在的正东方向相距6千米,在的北西方向,相距4千米,为敌炮阵地.某时刻,发现敌炮阵地的某信号,由于比距更远,因此4秒后,才同时发现这一信号(该信号的传播速度为每秒1千米).若从炮击敌阵地,求炮击的方位角 .