若的图像与直线相切,并且切点横坐标依次成公差为的等差数列.(1)求和的值; (2) ⊿ABC中,a、b、c分别是∠A、∠B、∠C的对边。若是函数 图象的一个对称中心,且a=4,求⊿ABC外接圆的面积。
已知函数. (I)判断的奇偶性; (Ⅱ)设函数在区间上的最小值为,求的表达式; (Ⅲ)若,证明:方程有两个不同的正数解.
已知函数()的部分图像, 是这部分图象与轴的交点(按图所示),函数图象上的点满足:.(Ⅰ)求函数的周期;(Ⅱ)若的横坐标为1,试求函数的解析式,并求的值.
某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供应不足使价格呈持续上涨态势,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:①;②;③.(以上三式中、均为常数,且)(I)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由)(II)若,,求出所选函数的解析式(注:函数定义域是.其中表示8月1日,表示9月1日,…,以此类推);(III)在(II)的条件下研究下面课题:为保证养殖户的经济效益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该海鲜将在哪几个月份内价格下跌.
有一道题目由于纸张破损,有一条件看不清楚,具体如下:(1)在ABC中,已知, ,,求角A.(2)经推断,破损处的条件为三角形一边的长度,该题的答案是唯一确定的,试将条件补充完整,并说明理由.
已知中,,为斜边上靠近顶点的三等分点.(Ⅰ)设,求;(Ⅱ)若,求在方向上的投影.