已知函数。(Ⅰ)试证函数f(x)的图象关于点对称;(Ⅱ)若数列的通项公式为, 求数列的前项和;(Ⅲ)设数列满足:,。设。若(Ⅱ)中的满足对任意不小于2的正整数,恒成立,试求的最大值。
(本小题满分12分) 一个社会调查机构就某社区居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图). (1)为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,求月收入在(元)段应抽出的人数; (2)为了估计该社区3个居民中恰有2个月收入在(元)的概率,采用随机模拟的方法:先由计算器产生0到9之间取整数值的随机数,我们用0,1,2,3,4表示收入在(元)的居民,剩余的数字表示月收入不在(元)的居民;再以每三个随机数为一组,代表统计的结果,经随机模拟产生了20组随机数如下: 907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,计算该社区3个居民中恰好有2个月收入在(元)的概率.
(本小题满分12分) 在△ABC中,a、b、c分别是角A、B、C所对的边,满足 (Ⅰ)求角B的大小; (Ⅱ)若,求函数的值域.
如图,分别是椭圆的左,右焦点,过点作轴的垂线交椭圆的上半部分于点,过点作直线的垂线交直线于点; (Ⅰ)若点的坐标为;求椭圆的方程; (Ⅱ)证明:直线与椭圆只有一个交点。
设其中,曲线在点处的切线垂直于轴. (Ⅰ) 求的值; (Ⅱ) 求函数的极值.
在直角梯形PBCD中A为PD的中点,如下左图。,将沿AB折到的位置,使,点E在SD上,且,如下右图。 (1)求证:平面ABCD; (2)求二面角E—AC—D的正切值.