已知函数。(Ⅰ)试证函数f(x)的图象关于点对称;(Ⅱ)若数列的通项公式为, 求数列的前项和;(Ⅲ)设数列满足:,。设。若(Ⅱ)中的满足对任意不小于2的正整数,恒成立,试求的最大值。
如图四棱锥S﹣ABCD中,SD⊥AD,SD⊥CD,E是SC的中点,O是底面正方形ABCD的中心,AB=SD=6. (1)求证:EO∥平面SAD; (2)求直线EO与平面SCD所成的角.
已知椭圆C:,(a>b>0)的两焦点分别为F1、F2,,离心率.过直线l:上任意一点M,引椭圆C的两条切线,切点为A、B. (1)在圆中有如下结论:“过圆x2+y2=r2上一点P(x0,y0)处的切线方程为:x0x+y0y=r2”.由上述结论类比得到:“过椭圆(a>b>0),上一点P(x0,y0)处的切线方程”(只写类比结论,不必证明). (2)利用(1)中的结论证明直线AB恒过定点(); (3)当点M的纵坐标为1时,求△ABM的面积.
(本小题满分14分)函数 (1)时,求函数的单调区间; (2)时,求函数在上的最大值.
(本小题满分分)已知椭圆:的长轴长为4,且过点. (1)求椭圆的方程; (2)设、、是椭圆上的三点,若,点为线段的中点,、两点的坐标分别为、,求证:.
(本小题满分14分) 设数列的前项和为,点在直线上,. (1)证明数列为等比数列,并求出其通项; (2)设,记,求数列的前和.