已知等比数列的首项,公比,数列前n项和记为,前n项积记为.(Ⅰ)求数列的最大项和最小项;(Ⅱ)判断与的大小, 并求为何值时,取得最大值;(Ⅲ)证明中的任意相邻三项按从小到大排列,总可以使其成等差数列,如果所有这些等差数列的公差按从小到大的顺序依次设为,证明:数列为等比数列。(参考数据)
如图,已知四棱锥的底面为等腰梯形,∥,,垂足为,是四棱锥的高。 (Ⅰ)证明:平面平面; (Ⅱ)若,60°,求四棱锥的体积。
为了参加贵州省高中篮球比赛,某中学决定从四个篮球较强的班级的篮球队员中选出人组成男子篮球队,代表该地区参赛,四个篮球较强的班级篮球队员人数如下表:
(Ⅰ)现采取分层抽样的方法从这四个班中抽取运动员,求应分别从这四个班抽出的队员人数; (Ⅱ)该中学篮球队奋力拼搏,获得冠军.若要从高三年级抽出的队员中选出两位队员作为冠军的代表发言,求选出的两名队员来自同一班的概率.
已知,,且. (I)将表示成的函数,并求的最小正周期; (II)记的最大值为,、、分别为的三个内角、、对应的边长,若且,求的最大值.
已知函数 (Ⅰ)求在点处的切线方程; (Ⅱ)若存在,满足成立,求的取值范围; (Ⅲ)当时,恒成立,求的取值范围.
设椭圆C:过点, 且离心率. (Ⅰ)求椭圆C的方程; (Ⅱ)过右焦点的动直线交椭圆于点,设椭圆的左顶点为连接且交动直线于,若以MN为直径的圆恒过右焦点F,求的值.