.(本小题满分14分)已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录于下表中:
(Ⅰ)求的标准方程;(Ⅱ)请问是否存在直线满足条件:①过的焦点;②与交不同两点且满足?若存在,求出直线的方程;若不存在,说明理由。
(本小题满分10分) 在△ABC中,a、b、c分别是角A、B、C的对边,, 且. (1)求角A的大小; (2)求的取值区间。
( 已知函数(常数)的图像过点、两点. (1)求的解析式; (2)若函数的图像与函数的图像关于直线对称,若不等式恒成立,求实数的取值范围; (3)若是函数图像上的点列,是正半轴上的点列,为坐标原点,是一系列正三角形,记它们的边长是,探求数列的通项公式,并说明理由.
( 某园林公司计划在一块为圆心,(为常数,单位为米)为半径的半圆形(如图)地上种植花草树木,其中弓形区域用于观赏样板地,区域用于种植花木出售,其余区域用于种植草皮出售.已知观赏样板地的成本是每平方米2元,花木的利润是每平方米8元,草皮的利润是每平方米3元. (1)设, ,用表示弓形的面积; (2)园林公司应该怎样规划这块土地,才能使总利润最大? 并求相对应的 (参考公式:扇形面积公式,表示扇形的弧长)
( 已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点在直线上。 (1)求椭圆的标准方程 (2)求以OM为直径且被直线截得的弦长为2的圆的方程; (3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值。
( 如图,在三棱柱中,,顶点在底面上的射影恰为点B,且. (1)求棱与BC所成的角的大小; (2)在线段上确定一点P,使,并求出二面角的平面角的余弦值.