海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为 y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海里 A 处,如图.现假设:①失事船的移动路径可视为抛物线 y = 12 49 x 2 ;②定位后救援船即刻沿直线匀速前往救援;③救援船出发 t 小时后,失事船所在位置的横坐标为 7 t .
(1)当 t = 0 . 5 时,写出失事船所在位置 P 的纵坐标. 若此时两船恰好会合,求救援船速度的大小和方向; (2)问救援船的时速至少是多少海里才能追上失事船?
已知函数f(x)=Asin(x+φ)(A>0,0<φ<π)(x∈R)的最大值是1,其图象经过点M. (1)求f(x)的解析式; (2)已知α、β∈,且f(α)=,f(β)=, 求f(α-β)的值.
已知数列{an}满足,a1=1,a2=2,an+2=,n∈N. (1)令bn=an+1-an,证明:{bn}是等比数列: (2)求{an}的通项公式.
设曲线y=x2+x+1-ln x在x=1处的切线为l,数列{an}中,a1=1,且点(an,an+1)在切线l上. (1)求证:数列{1+an}是等比数列,并求an; (2)求数列{an}的前n项和Sn.
等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列. (1)求{an}的公比q; (2)若a1-a3=3,求Sn,
等比数列{an}中,已知a1=2,a4=16. (1)求数列{an}的通项公式; (2)若a3,a5分别为等差数列{bn}的第3项和第5项,试求数列{bn}的通项公式及前n项和Sn.