(本小题满分l4分)已知数列的前n项和为,正数数列中(e为自然对数的底)且总有是与的等差中项,的等比中项.(1) 求证: 有; (2) 求证:有.
解不等式
已知函数,()其定义域为(), 设.(1)试确定的取值范围,使得函数在上为单调函数;(2)试判断的大小并说明理由.
已知,,直线与函数的图象相切,切点的横坐标为,且直线与函数的图象也相切.(Ⅰ)求直线的方程及实数的值;(Ⅱ)若(其中是的导函数),求函数的最大值;(Ⅲ)当时,求证:
已知、、、为圆上的四点,直线为圆的切线,,与相交于点 ⑴ 求证:平分 ⑵,求的长.
已知函数为常数,且有极大值,求的值及的极小值.