(本小题满分14分)已知函数的图象是曲线C,点是曲线C上的一系列点,曲线C在点处的切线与y轴交于点。若数列是公差为2的等差数列,且(1)分别求出数列与数列的通项公式;(2)设O为坐标原点,表示的面积,求数列的前项n和
已知,函数. ⑴若不等式对任意恒成立,求实数的最值范围; ⑵若,且函数的定义域和值域均为,求实数的值.
(本小题满分15分)在数列中,,. (1)设.证明:数列是等差数列;(2)求数列的前项和.
如图,在三棱锥中,点分别是棱的中点. (1)求证://平面; (2)若平面平面,,求证:.
在△ABC中,角A,B,C的对边分别为,,,且. (1)求角的值; (2)若角,边上的中线=,求的面积.
已知为常数,且,函数, (是自然对数的底数). (1)求实数的值; (2)求函数的单调区间; (3)当时,是否同时存在实数和(),使得对每一个,直线与曲线都有公共点?若存在,求出最小的实数和最大的实数;若不存在,说明理由.