设分别是椭圆: ()的左、右焦点,过斜率为1的直线与该椭圆相交于P,Q两点,且,,成等差数列.(Ⅰ)求该椭圆的离心率;(Ⅱ)设点M(0,-1)满足|MP|=|MQ|,求该椭圆的方程.
已知是正整数,的展开式中的系数为7.求展开式中的系数的最小值,并求这时的近似值(精确到0.01).
6个人坐在一排10个座位上,则(用数字表示).(1)空位不相邻的坐法有多少种?(2)4个空位只有3个相邻的坐法有多少种?(3)4个空位至多有2个相邻的坐法有多少种?
如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数)的图象,且点M到边OA距离为.(1)当时,求直路所在的直线方程;(2)当t为何值时,地块OABC在直路不含泳池那侧的面积取到最大,最大值是多少?
已知函数(1)求函数的单调区间;(2)若函数的图像与直线恰有两个交点,求的取值范围.
设集合为函数的定义域,集合为函数的值域,集合为不等式的解集.(1)求;(2)若,求的取值范围.