(本小题满分12分) 命题实数x满足(其中),命题实数满足(1)若,且为真,求实数的取值范围;(2)若是的充分不必要条件,求实数a的取值范围.
(本小题满分12分)如图,在四棱锥P-ABCD中,AB∥ CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD. E和F分别是CD和PC的中点. 求证: (1)PA⊥底面ABCD; (2)BE∥平面PAD; (3)平面BEF⊥平面PCD.
(本小题满分12分)设a>0,a≠1,t>0,比较logat与loga的大小,并证明你的结论.
(本小题满分12分)已知在等比数列{an}中,a1=1,且a2是a1和a3-1的等差中项. (1)求数列{an}的通项公式; (2)若数列{bn}满足b1+2b2+3b3+…+nbn=an(n∈N*),求{bn}通项公式bn
(12分) 已知向量=,=. (1)若,求的值; (2)记f(x)=,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
(10分)设函数f(x)=mx2-mx-1. (1)若对于一切实数x,f(x)<0恒成立,求m的取值范围; (2)若对于x∈[1,3],恒成立,求m的取值范围.