如图,圆与轴的正半轴的交点为,点、在圆上,且点位于第一象限,点的坐标为,.(Ⅰ)求圆的半径及点的坐标(用表示);(Ⅱ)若,求的值.
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数. ①; ②; ③; ④; ⑤. (1)从上述五个式子中选择一个,求出常数; (2)根据(1)的计算结果,将该同学的发现推广为一个三角恒等式,并证明你的结论.
如图,四棱锥的底面是正方形,棱底面,=1,是的中点. (1)证明平面平面; (2)求二面角的余弦值.
已知函数,其中 (1)对于函数,当时,,求实数的取值集合; (2)当时,的值为负,求的取值范围.
设函数. (Ⅰ)解不等式; (Ⅱ)若不等式的解集为,求实数的取值范围.
极坐标系与直角坐标系有相同的长度单位,以原点为极点,以轴正半轴为极轴.已知直线的参数方程为(为参数),曲线的极坐标方程为. (Ⅰ)求的直角坐标方程; (Ⅱ)设直线与曲线交于两点,求弦长.