(本小题满分14分)如图,△ABC为一个等腰三角形形状的空地,腰CA的长为3(百米),底AB的长为4(百米).现决定在该空地内筑一条笔直的小路EF(宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等、面积分别为S1和S2.(1) 若小路一端E为AC的中点,求此时小路的长度;(2) 求的最小值.
如图椭圆(a>b>0)的上顶点为A,左顶点为B, F为右焦点, 过F作平行与AB的直线交椭圆于C、D两点. 作平行四边形OCED, E恰在椭圆上. (1)求椭圆的离心率; (2)若平行四边形OCED的面积为, 求椭圆方程.
已知复数 根据下列条件,求m值. (1)z是实数;(2)z是虚线;(3)z是纯虚数;(4)z=0.
求证:关于x的方程x2+2ax+b="0" 有实数根,且两根均小于2的充分但不必要条件是a≥2且|b| ≤4.
给定两个命题,:对任意实数都有恒成立;:关于的方程有实数根;如果与中有且仅有一个为真命题,求实数的取值范围
分别写出下列命题的逆命题,否命题,逆否命题,并判断其真假. (1)矩形的对角线相等且互相平分; (2)正偶数不是质数.