(本小题满分14分)如图,△ABC为一个等腰三角形形状的空地,腰CA的长为3(百米),底AB的长为4(百米).现决定在该空地内筑一条笔直的小路EF(宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等、面积分别为S1和S2.(1) 若小路一端E为AC的中点,求此时小路的长度;(2) 求的最小值.
已知函数. (1)若,求函数的单调区间; (2)设函数在区间上是增函数,求的取值范围.
某校夏令营有3名男同学和3名女同学,其年级情况如下表:
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同) (1)用表中字母列举出所有可能的结果 (2)设为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件发生的概率.
已知函数,其中,为自然对数的底数. (1)设是函数的导函数,求函数在区间上的最小值; (2)若,函数在区间内有零点,求的取值范围。
如图,在平面直角坐标系中,分别是椭圆的左、右焦点,顶点的坐标为,连结并延长交椭圆于点A,过点A作轴的垂线交椭圆于另一点C,连结. (1)若点C的坐标为,且,求椭圆的方程; (2)若求椭圆离心率e的值.
如图,分别是正三棱柱的棱、的中点,且棱,. (1)求证:平面; (2)在棱上是否存在一点,使二面角的大小为,若存在,求的长,若不存在,说明理由。