某人投篮一次命中概率为,共投篮7次。(1)试问至多有1次命中的概率;(2)试问出现命中次数为奇数的概率与命中次数为偶数的概率是否相等?请说明理由。
如图,在长方体中,,且. (Ⅰ)求证:对任意,总有; (Ⅱ)若,求二面角的余弦值; (Ⅲ)是否存在,使得在平面上的射影平分?若存在,求出的值,若不存在,说明理由.
已知,若能表示成一个奇函数和一个偶函数的和. (Ⅰ)求和的解析式; (Ⅱ)若和在区间上都是减函数,求的取值范围.
在△ABC中, a,b,c分别为角A,B,C的对边,已知,△ABC的面积为,又. (Ⅰ)求角C的大小; (Ⅱ)求a+b的值.
已知函数在区间上单调递减,在区间上单调递增. (Ⅰ)求实数的值; (Ⅱ)若关于的方程有三个不同实数解,求实数的取值范围; (Ⅲ)若函数的图象与坐标轴无交点,求实数的取值范围.
设定义在R上的函数满足:①对任意的实数,有②当. 数列满足. (1)求证:,并判断函数的单调性; (2)令是最接近的正整数,即, 设,求;