已知:如图,梯形ABCD中,DC∥AB,AD=BC,对角线AC、BD交于点O,∠COD=60°,若CD=3,AB=8,求梯形ABCD的高.
(年宁夏区10分)在Rt△ABC中,∠C=90°,P是BC边上不同于B、C的一动点,过P作PQ⊥AB,垂足为Q,连接AP.(1)试说明不论点P在BC边上何处时,都有△PBQ与△ABC相似;(2)若AC=3,BC=4,当BP为何值时,△AQP面积最大,并求出最大值;(3)在Rt△ABC中,两条直角边BC、AC满足关系式BC=AC,是否存在一个的值,使Rt△AOP既与Rt△ACP全等,也与Rt△BQP全等.
(年山东威海12分)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA的度数.
(年山东日照14分)如图1,在菱形OABC中,已知OA=,∠AOC=60°,抛物线y=ax2+bx+c(a≠0)经过O,C,B三点.(1)求出点B、C的坐标并求抛物线的解析式.(2)如图2,点E是AC的中点,点F是AB的中点,直线AG垂直BC于点G,点P在直线AG上.①当OP+PC的最小值时,求出点P的坐标;②在①的条件下,连接PE、PF、EF得△PEF,问在抛物线上是否存在点M,使得以M,B,C为顶点的三角形与△PEF相似?若存在,请求出点M的坐标;若不存在,请说明理由.
(年内蒙古呼伦贝尔13分)以AB为直径作半圆O,AB=10,点C是该半圆上一动点,连接AC、BC,延长BC至点D,使DC=BC,过点D作DE⊥AB于点E,交AC于点F,在点C运动过程中:(1)如图1,当点E与点O重合时,连接OC,试判断△COB的形状,并证明你的结论;(2)如图2,当DE=8时,求线段EF的长;(3)当点E在线段OA上时,是否存在以点E、O、F为顶点的三角形与△ABC相似?若存在,请求出此时线段OE的长;若不存在,请说明理由.
(年湖南益阳12分)如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.