已知关于的方程有两个不相等的实数根,求①的取值范围.②当k为最小整数时求原方程的解。
在学习轴对称的时候,老师让同学们思考课本中的探究题。如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?你可以在上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值: .
吸烟有害健康,为配合“戒烟”运动,某校组织同学们在社区开展了“你支持哪种戒烟方式”的随机问卷调查,并将调查结果绘制成两幅不完整的统计图:根据统计图解答下列问题:(1)同学们一共调查了多少人?(2)将条形统计图补充完整。(3)若该社区有1万人,请你估计大约有多少人支持“警示戒烟”这种方式?(4)为了让更多的市民增强“戒烟”意识,同学们在社区做了两期“警示戒烟”的宣传。若每期宣传后,市民支持“警示戒烟”的平均增长率为20%,则两期宣传后支持“警示戒烟”的市民约有多少人?
某校学生去春游,在风景区看到一棵汉柏树,不知这棵汉柏树有多高,下面是两位同学的一段对话:小明:我站在此处看树顶仰角为。小华:我站在此处看树顶仰角为。小明:我们的身高都是1.6m.小华:我们相距20m。请你根据这两位同学的对话,计算这棵汉柏树的高度。(参考数据:,,结果保留三个有效数字)
如图,在矩形ABCD中,AB=6,AD=12,点E在AD边上,且AE=8,EF⊥BE交CD于F.(1)求证:△ABE∽△DEF;(2)求EF的长.
如图,梯形ABCD是直角梯形.(1)直接写出点A、B、C、D的坐标;(2)画出直角梯形ABCD关于y轴的对称图形,使它与梯形ABCD构成一个等腰梯形.(3)将(2)中的等腰梯形向上平移四个单位长度,画出平移后的图形.(不要求写作法)