(本小题满分13分)已知,函数,.(1)判断函数在区间上的单调性(其中为自然对数的底数);(2)是否存在实数,使曲线在点处的切线与轴垂直若存在,求出的值;若不存在,请说明理由.
如图所示,设P是抛物线C1:x2=y上的动点,过点P作圆C2:x2+(y+3)2=1的两条切线,交直线l:y=-3于A、B两点.(1)求圆C2的圆心M到抛物线C1准线的距离;(2)是否存在点P,使线段AB被抛物线C1在点P处的切线平分?若存在,求出点P的坐标;若不存在,请说明理由.
已知F1,F2分别是椭圆E:+y2=1的左、右焦点,F1,F2关于直线x+y-2=0的对称点是圆C的一条直径的两个端点.(1)求圆C的方程;(2)设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a,b.当ab最大时,求直线l的方程.
如图,椭圆的中心为原点O,长轴在x轴上,离心率e=,过左焦点F1作x轴的垂线交椭圆于A、A′两点,=4.(1)求该椭圆的标准方程;(2)取平行于y轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP′Q的面积S的最大值,并写出对应的圆Q的标准方程.
在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为2,在y轴上截得线段长为2.(1)求圆心P的轨迹方程;(2)若P点到直线y=x的距离为,求圆P的方程.
如图,抛物线E:y2=4x的焦点为F,准线l与x轴的交点为A.点C在抛物线E上,以C为圆心,|CO|为半径作圆,设圆C与准线l交于不同的两点M,N.(1)若点C的纵坐标为2,求|MN|;(2)若|AF|2=|AM|·|AN|,求圆C的半径.