已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.(Ⅰ)证明:CM⊥SN;(Ⅱ)求SN与平面CMN所成角的大小.
(本小题满分12分) 已知不等式组所表示的平面区域为D,记D内的整点个数为(整点即横坐标和纵坐标均为整数的点). (1)数列的通项公式; (2)若,记,求证:.
(本小题满分12分) 如图示,在四棱锥A-BHCD中,AH⊥面BHCD,此棱锥的三视图如下: (1)求二面角B-AC-D的大小; (2)在线段AC上是否存在一点E,使ED与面BCD成45°角?若存在,确定E的位置;若不存在,说明理由。
..(本小题满分12分) 已知:,, 函数. (1)化简的解析式,并求函数的单调递减区间; (2)在△ABC中,分别是角A,B,C的对边,已知,△ABC的面积为,求的值.
(本小题满分12分) 已知函数在点x=1处的切线与直线垂直,且f(-1)=0,求函数f(x)在区间[0,3]上的最小值。
本题共有3个小题,第1小题满分5分,第2小题满分6分,第3小题满分7分 已知曲线的方程为,、为曲线上的两点,为坐标原点,且有. (1)若所在直线的方程为,求的值; (2)若点为曲线上任意一点,求证:为定值; (3)在(2)的基础上,用类比或推广的方法对新的圆锥曲线写出一个命题,并对该命题加以证明.