如图,斜三棱柱ABC—A1B1C1的底面是直角三角形,AC⊥CB,∠ABC=45°,侧面A1ABB1是边长为a的菱形,且垂直于底面ABC,∠A1AB=60°,E、F分别是AB1、BC的中点.(1)求证EF//平面A1ACC1;(2)求EF与侧面A1ABB1所成的角;(3)求二面角的大小的余弦值.
(本小题满分12分)已知幂函数为偶函数,且在区间上是单调增函数.⑴求函数的解析式;⑵设函数,若的两个实根分别在区间内,求实数的取值范围.
(本小题满分12分)定义域为的函数满足,当∈时,(1)当∈时,求的解析式;(2)当x∈时,≥恒成立,求实数的取值范围.
(本小题14分) 已知函数,若(1)求曲线在点处的切线方程;(2)若函数在区间上有两个零点,求实数b的取值范围;(3)当
(本小题13分)已知函数(1)若实数求函数在上的极值;(2)记函数,设函数的图像与轴交于点,曲线在点处的切线与两坐标轴所围成图形的面积为则当时,求的最小值.
(本小题12分)如图:四棱锥P—ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.(1)证明:无论点E在BC边的何处,都有PE⊥AF;(2)当BE等于何值时,PA与平面PDE所成角的大小为45°.