如图,为正方形对角线AC上一点,以为圆心,长为半径的⊙与相切于点.求证:与⊙相切;若⊙的半径为1,求正方形的边长.
解方程(每题5分,共10分)(1) (2)
如图,直线y=3x+m交x轴于点A,交y轴于点B(0,3),过A、B两点的抛物线交x轴于另一点C(3,0).(1)求抛物线的解析式;(2)在该抛物线的对称轴上找一点P,使PA+PB最小,求出点P的坐标;(3)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.
某水果批发商销售每箱进价为40元的苹果,市场调查发现若每箱以50元的价格销售,平均每天销售90箱,价格每提高10元,平均每天少销售5箱.(1)求该批发商平均每天的销售利润 w(元)与销售价 x(元/箱)之间的函数关系式,当x为多少时,w有最大值,这个值是多少?(2)若物价部门规定每箱售价不得高于90元,当每箱苹果的销售价为多少元时,可以获得3000元利润?
如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=DB,连结AC,过点D作DE⊥AC于E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线;
如图,正方形ABCD的边长是6,以正方形的一边BC为直径做半圆,过点A作AF切半圆于点F,交DC于点E,求四边形ABCE的面积。