已知抛物线。<1>求抛物线顶点M的坐标; <2>若抛物线与x轴的交点分别为点A、B(点A在点B的左边),与y轴交于点C,点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B,点M重合),设NQ的长为t,四边形NQAC的面积为S,求S与t之间的函数关系式及自变量t的取值范围; <3>在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.
先化简:-,再求当x满足时,此分式的值.
如图,点A是双曲线与直线y=-x-(k+1)在第二象限内的交点,AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(3)写出当一次函数值大于反比例函数值时,x取值范围?
如图所示,在Rt△ABC中,∠ABC=90°, 将Rt△ABC绕点C按顺时针方向旋转60°得到△DEC,点E在AC上,再将Rt△ABC沿着AB所在的直线翻转180°得到△ABF.且使C、B、F三点在一条直线上,连接AD。(1)求证:四边形AFCD是菱形;(2)连接BE并延长交AD于G,连接CG,请问:四边形ABCG是什么特殊平行四边形?为什么?
某中学九年级学生在学习“直角三角形的边角关系”时,组织开展测量物体高度的实践活动.要测量学校一幢教学楼的高度(如图),他们先在点C测得教学楼AB的顶点A的仰角为370,然后向教学楼前进10米到达点D,又测得点A的仰角为45°.请你根据这些数据,求出这幢教学楼的高度.参考数据: , , ,
某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1050元,问第二周每个旅游纪念品的销售价格为多少元?