某校为了解初中生的交通安全知识掌握情况,在本校初中部随机抽取10﹪的学生,进行了交通安全知识测试,得分情况如下两个统计图,并约定85分及以上为优秀;73分~84分为良好;60分~72分为合格;59分及以下为不合格(满分为100分).在抽取的学生中,不合格人数所占的百分比是 ;若不合格学生的总分恰好等于其他等级的某一个学生的分数,请推测这个学生是什么等级?并估算出该校初中部学生中共有多少人不合格?试求所抽取的学生的平均分..
如图,四边形ABCD是菱形,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F,连接CE. (1)求证:∠DAE=∠DCE; (2)当AE=2EF时,判断FG与EF有何等量关系?并证明你的结论?
已知:如图一次函数y=x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=x2+bx+c的图象与一次函数y=x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0) (1)求二次函数的解析式; (2)求四边形BDEC的面积S; (3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由.
为了抓住世博会商机,某商店决定购进A、B两种世博会纪念品.若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元. (1)求购进A、B两种纪念品每件各需多少元? (2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案? (3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?
关于x的方程有两个不相等的实数根. (1)求k的取值范围。 (2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由
如图所示,某居民楼Ⅰ高20米,窗户朝南。该楼内一楼住户的窗台离地面距离CM为2米,窗户CD高1.8米。现计划在I楼的正南方距I楼30米处新建一居民楼Ⅱ。当正午时刻太阳光线与地面成30°角时,要使Ⅱ楼的影子不影响I楼所有住户的采光,新建Ⅱ楼最高只能盖多少米?