为了调查某校全体初中生的视力变化情况,统计了每位初中生连续三年视力检查的结果(如图1),并统计了2010年全校初中生的视力分布情况(如图2、3).
图2
从图1提供的信息用统计知识,预测2012年全校学生的视力在4.9及以下的学生人数(从一个角度预测即可);
已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上以每秒1个单位的速度由C向B运动.(1) 求梯形ODPC的面积S与时间t的函数关系式;(2) 在线段PB上是否存在一点Q,使得ODQP为菱形.若存在求t值;若不存在,说明理由;(3) 当△OPD为等腰三角形时,直接写出点P的坐标.
如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA,延长BE交边AD于点F.(1)求证:△ADE≌△BCE; (2)求∠AFB的度数.
如图,直线过点A(0,4),点D(4,0),直线:与轴交于点C,两直线、相交于点B.(1)求直线的函数关系式;(2)求点B的坐标;(3)求△ABC的面积.
阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,所得的差就是小数部分.又例如:因为,即,所以的整数部分为2,小数部分为.请解答下列问题:(1) 如果,其中是整数,且,那么= , = ;(2) 最接近的两个整数是 、 ,将这两个整数作为直角三角形的两条边,请你计算第三边的长度.
已知:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且DE=BF.请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).(1)连接 ;(2)猜想: = ;(3)证明: