.(本题满分7分)已知:过点的直线与焦点在轴上的椭圆恒有公共点,:方程表示双曲线,问:是的什么条件?并说明理由.
(本小题满分12分)各项均不为零的数列(1)求数列的通项公式;(2)数列
(本小题满分12分)某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可以继续参加科目B的考试。每个科目只允许有一次补考机会,两个科目成绩均合格方可获得该项合格证书,现在某同学将要参加这项考试,已知他每次考科目A成绩合格的概率均为,每次考科目B成绩合格的概率均为。假设他在这项考试中不放弃所有的考试机会,且每次的考试成绩互不影响,记他参加考试的次数为X。(1)求X的分布列和均值;(2)求该同学在这项考试中获得合格证书的概率。
如图,四棱锥P—ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点。(1)求证:BE//平面PAD;(2)若BE⊥平面PCD,①求异面直线PD与BC所成角的余弦值;②求二面角E—BD—C的余弦值。
(本小题12分)已知钝角△ABC中,角A、B、C的对边分别为a、b、c,且有(1)求角B的大小;(2)设向量的值。
(本小题满分12分)数列:满足(1) 设,求证是等比数列;(2) 求数列的通项公式;(3) 设,数列的前项和为,求证: