(本小题满分12分)某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可以继续参加科目B的考试。每个科目只允许有一次补考机会,两个科目成绩均合格方可获得该项合格证书,现在某同学将要参加这项考试,已知他每次考科目A成绩合格的概率均为,每次考科目B成绩合格的概率均为。假设他在这项考试中不放弃所有的考试机会,且每次的考试成绩互不影响,记他参加考试的次数为X。(1)求X的分布列和均值;(2)求该同学在这项考试中获得合格证书的概率。
设函数f(x)=cos(2x+)+sinx.(1)求函数f(x)的最大值和最小正周期. w.w.(2)设A,B,C为ABC的三个内角,若cosB=,,且C为锐角,求sinA.
已知向量,向量,与向量的夹角为,且="-1 " (1)求向量; (2)设向量=(1,0),向量,其中0<<,若=0,试求|︱的取值范围。
已知向量,,.(1)若,求;(2)求的最大值.
已知向量.(1)若,求的值;(2)记,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
某班有48名同学,一次考试后数学成绩服从正态分布.平均分为80,标准差为10,问从理论上讲在80分至90分之间有多少人?