如图,已知正方形ABCD在直线MN的上方,边BC在直线MN上,E是线段BC上一点,以AE为边在直线MN的上方作正方形AEFG,其中AE=2,记∠FEN=,△EFC的面积为S.(1)求S与之间的函数关系;(2)当角取何值时S最大?并求S的最大值。
改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村2001到2005年五年间每年考入大学的人数,为了方便计算,2001年编号为1,2002年编号为2,……,2005年编号为5,数据如下:
(1)从这5年中随机抽取两年,求考入大学的人数至少有年多于10人的概率;(2)根据这年的数据,利用最小二乘法求出关于的回归方程,并计算第年的估计值.参考:用最小二乘法求线性回归方程系数公式
设命题;命题:不等式对任意恒成立.若为真,且或为真,求的取值范围.
求经过直线的交点M,且满足下列条件的直线方程: (1)与直线2x+3y+5=0平行; (2)与直线2x+3y+5=0垂直.
已知圆M的圆心M在x轴上,半径为1,直线:y=x-被圆M所截的弦长为,且圆心M在直线的下方.(1)求圆M的方程;(2)设A(0,t),B(0,t+6)(-5≤t≤-2),若圆M是△ABC的内切圆,求△ABC的面积S的最大值和最小值.
袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时即终止.每个球在每一次被取出的机会是等可能的.用表示取球终止时所需要的取球次数.(1)求袋中原有白球的个数;(2)求随机变量的概率分布;(3)求甲取到白球的概率.