设函数.(1)求f(x)的单调区间;(2)若当x∈[-2,2]时,不等式f(x)>m恒成立,求实数m的取值范围
数列{an}满足4a1=1,an-1=[(-1)nan-1-2]an(n≥2),(1)试判断数列{1/an+(-1)n}是否为等比数列,并证明;(2)设an2∙bn=1,求数列{bn}的前n项和Sn.
如图,在四棱锥P-ABCD中,底面为直角梯ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.(1)求证:PB⊥DM;(2)求CD与平面ADMN所成角的正弦值;(3)在棱PD上是否存在点E,PE∶ED=λ,使得二面角C-AN-E的平面角为60o.存在求出λ值.
某机构向民间招募防爆犬,首先进行入围测试,计划考察三个项目:体能,嗅觉和反应.这三个项目中只要有两个通过测试,就可以入围.某训犬基地有4只优质犬参加测试,已知它们通过体能测试的概率都是1/3,通过嗅觉测试的概率都是1/3,通过反应测试的概率都是1/2.求(1)每只优质犬能够入围的概率;(2)若每入围1只犬给基地记10分,设基地的得分为随机变量ξ,求ξ的数学期望.
在△ABC中,;(1)求:AB2+AC2的值;(2)当△ABC的面积最大时,求A的大小.
已知函数f (x)=| x-a | + | x + 2 |(a为常数,且a∈R).(Ⅰ)若函数f (x)的最小值为2,求a的值;(Ⅱ)当a=2时,解不等式f (x)≤6.